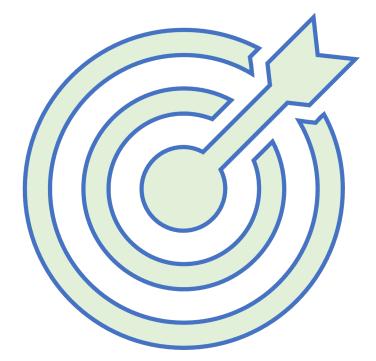
CYTOLOGY Fixation & Staining

Aziza R Al-Rafiah, PhD

Professor of Neuroscience

Faculty of Applied Medical Sciences

King Abdulaziz University


Director, Training and Skills Development Unit Innovation and Entrepreneurship Center.Associate Professor King Abdul Aziz University |CInP| CInS| CDTP| GINI

1

Learning Objectives

- **1. Define fixation**
- 2. Explain the Aims of Fixation.
- 3. Describe Fixation Methods & types of fixatives.
- 4. Describe Cytology Staining for dray fixed slides.
- 5. Name Other Cytopathology Staining Techniques.
- 6. Describe Immunocytochemistry.

Definition and Aims of Fixation in Cytology

Definition of Fixation:

Preservation of cells as close as possible to the living state.

The Aims of Fixation

- Preserves cellular architecture and morphology
- **Stope** enzymatic degradation and autolysis
- Prevents putrefaction by inactivating bacteria and enzymes
- Stabilizes protein structures for better staining
- Enhances contrast and visibility of cellular details under microscopy
- Facilitates accurate diagnosis by maintaining cell integrity

An appropriate fixative for Cytodiagnostic purposes should perform the following functions

✓ **Penetrate** cells rapidly ✓ Minimize cell shrinkage ✓ Maintain morphologic integrity ✓ **Deactivate** autolytic enzymes ✓ **Replace** cellular water ✓ Facilitate diffusion of dyes across cell boundaries ✓ Help cells adhere to a glass surface ✓ **Provide** consistent results over time

1. Wet Fixation:

Wet fixation in cytology refers to preserving cells by immediately immersing the cytology specimen in a liquid fixative after it has been collected.

2. Air drying:

The process is straightforward; the specimen is spread on a slide and left to dry in the air.

3. Heat Fixation:

It is rarely used in cytology but can be applied for certain types of smears to adhere cells to the slide.

Fixation Methods

Wet Fixation:

- **1.** Alcohol-based Fixatives are 95% ethanol or methanol, dehydrate, and coagulate proteins to preserve cell morphology.
- **2. Formalin-based Fixatives:** Formaldehyde solution that cross-links proteins, commonly used for tissue specimens but also for specific cytological preparations.
- **3. Spray Fixatives:** Aerosols that rapidly fix cells on slides often contain a mixture of alcohol and polyethylene glycol.

Time of Fixation

- ✓ Minimum 15 minutes of fixation
- ✓Can be Prolonged
- ✓ several days or even a few weeks
- ✓ If smears are to be preserved over a long period in alcohol, storing them in capped containers in the refrigerator is better.

Coating fixatives

The most common fixatives

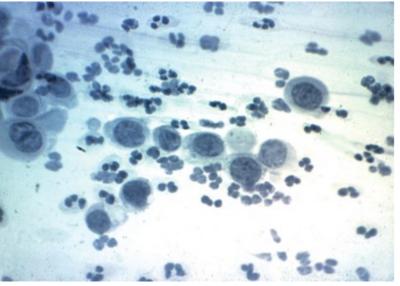
Carbowax Artifact

Carnoy's fixative

Coating fixatives

- Coating fixatives in cytology are substances used to 'coat' or 'cap' cellular and tissue components, stabilizing them structurally and chemically for microscopic examination.
- Coating fixatives are generally easy to apply, often coming in a spray form that can be evenly distributed over the slide: aerosols or liquid base.
- **Diaphine** fixative Spray coating fixative (Hairspray)
- Not recommended for bloody smears

Dual action:	
Alcohol base Wax like substance	fixes the cellsforms a thin protective coating


Carbowax Artifact

Carbowax (Polyethylene Glycol) fixative is often used to prepare specimens for **electron microscopy** due to its protective properties that help **preserve ultrastructural details**.

It can help preserve cell shapes and structures without causing significant shrinkage or distortion, which is beneficial for maintaining the morphological details required for accurate cytological assessment.

If the carbowax is not removed Completely:

Nuclei will then appear foggy and lack chromatinic detail, and the cytoplasm may exhibit a pale blue color.

Carbowax not removed. Lack of chromatin details and hazy appearance of the cell

Carnoy's fixative

A mixture of chloroform, Absolute alcohol, and acetic acid preserves fine cellular details. 6 : 3: 1

Carnoy's fixative is designed for use with hemorrhagic samples.

An **excellent nuclear fixative** as well as a preservative of **glycogen**

Fixation Methods

2. Air drying Fixation :

1. Morphological Changes:

Air drying can cause morphological alterations.

2. Staining Compatibility:

Air-dried slides are often stained with **Romanowsky-type stains**, such as Wright's, Giemsa, or Diff-Quik.

3.Use Cases:

Air drying is commonly used in **hematological cytology** and sometimes in **fine needle aspirations**, where the particular staining qualities of air-dried cells benefit the diagnostic process.

4. Rapid Assessment:

This method allows for a rapid on-site preliminary assessment of the sample (e.g., adequacy assessment during fine needle aspiration procedures).

Cytology Staining

Dr. Aziza Alrafiah

Characteristics Of Ideal Stain In Cytopathology

1-Enhance contrast: Stains help differentiate cellular components by providing color contrast.

2- Proper Cellular detail: Different stains highlight specific parts of the cell, such as the nucleus, cytoplasm, or certain organelles.

3- Diagnostic clarity: Staining can reveal pathological changes, aiding in the diagnosis of diseases.

4- Evaluation of **background** (blood, secretions, mucin.....)

Stains used in cytopathology

1.Papanicolaou stain

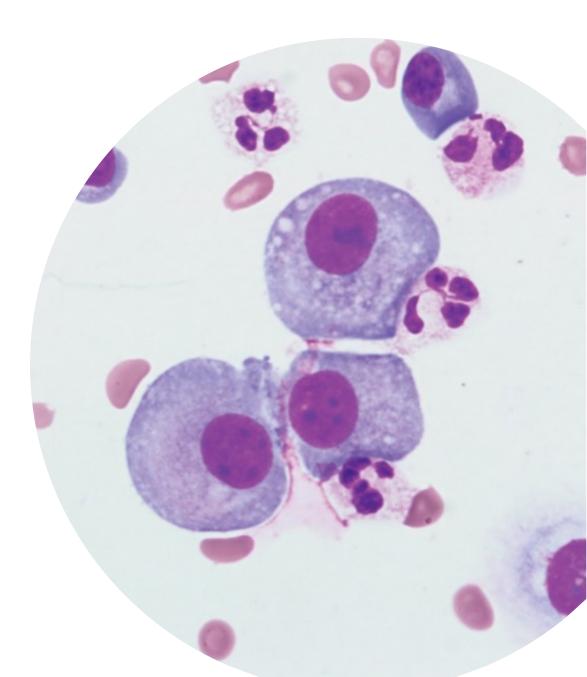
2. Romanowsky stain (FNAC & fluids)

3. H & E (FNAC & fluids)

Dr. Aziza Alrafiah

Stain For Air Dried Slides Romanowsky Effect

- Fine needle aspiration cytology FNAC
- Body Fluids

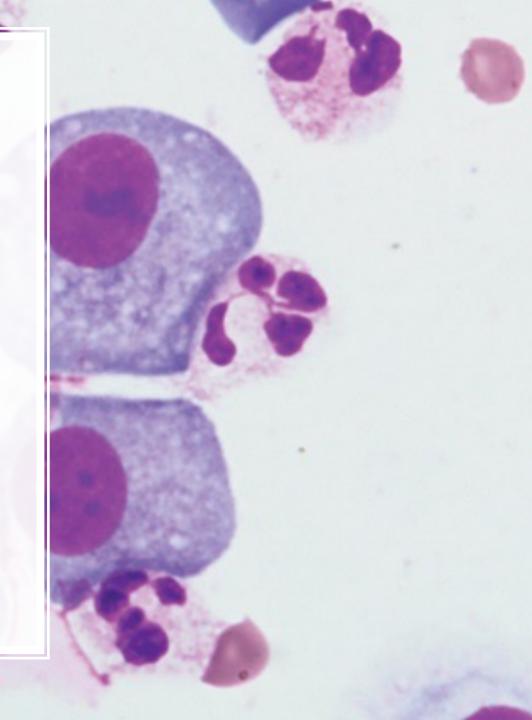

ROMANOWSKY STAIN

Group of stains include:

- 1. Wright's stain
- 2. Giemsa stain
- 3. Wright's Giemsa stain

Most common combination:

May Grunwald-Giemsa stain (MGG)
Leishman stains
Diff- Quik stain



Romanowsky Effect

- Purple nuclei
- Blue cytoplasm
- Pink red blood cells
- Requires careful control of PH, Which should be between PH 6.8 to 7.2

Dr. Aziza Alrafiah

- Staining kits:
- Rapi-Diff
- Diff-Quik

Diff-Quik Stain

• On-site stain

• Allows quick assessment of cell morphology, enabling rapid onsite evaluation of sample adequacy and preliminary diagnosis.

- Is a commercial Romanowsky stain variant.
- commonly used in histological staining to rapidly stain and differentiate a variety of smears
- It's used for various sample types, including **blood smears**, **bone marrow aspirates**, and **fine-needle aspiration** biopsies.

Advantages: It provides excellent delineation of nuclear and cytoplasmic elements and is less labor-intensive than traditional stains like Papanicolaou.

Diff-Quik Stain Method

Allow smears to dry

1.Dip slide five times, for one second each, into Fixative.

Allow excess to drain after each dip.

2.Dip slide five times, for one second each, into **Stain 1**. Allow excess to drain after each dip.

3. Dip slide five times, for one second each, into Stain 2.

Allow excess to drain after each dip.

- 4. Rinse slide in distilled water or Weise's buffer, pH 7.2.
- **5. Blot** or allow to dry in air.
- **6. Examine** at low power to identify structures and then under oil immersion.

Solutions :

Fixative (Fast green in methanol) - pale green Stain solution 1 (Eosin G in phosphate buffer) - red Stain solution 2 (Thiazine dye in phosphate buffer)-blue Distilled water or Weise's buffer, pH 7.2.

Other Cytopathology Staining Techniques

Besides the widely used Papanicolaou and Diff-Quik stains, cytopathology incorporates various other staining techniques tailored for specific diagnostic purposes.

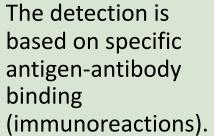
- 1. Acid-fast Stain: Used to identify acid-fast bacilli such as Mycobacterium tuberculosis in sputum samples.
- 2. Giemsa Stain: Effective for detecting parasites and certain bacteria, as well as for hematologic cytology.
- 3. Masson's Trichrome: Differentiates between muscle fibers, collagen, and fibrin in tissue samples.
- **4. Periodic Acid-Schiff (PAS)**: Highlights carbohydrates and carbohydrate-rich structures, helpful in diagnosing fungal infections and glycogen storage diseases.
- 5. Congo Red: Used for the identification of amyloid deposits in tissue.
- 6. Silver Staining: Used for reticulin fibers, nerve fibers, and fungal organisms.

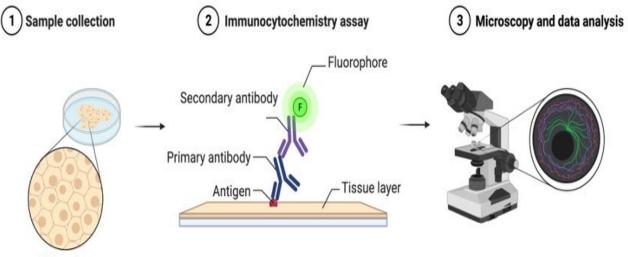
Other Cytopathology Staining Techniques

1-Immunocytochemistry (ICC)

Immunocytochemistry (ICC) is a common laboratory technique that uses antibodies that target specific peptides or protein antigens in the cell via specific epitopes.

2- Flow cytometry


Flow cytometry is a technique used to detect and measure the physical and chemical characteristics of a population of cells or particles.


Immunocytochemistry

1

on isolated cells

Mono layer

ICC in Diagnostic Cytology Applications

Tumour Diagnosis & Classification

Predictor Markers

Target Therapy

Immunocytochemistry Fixation

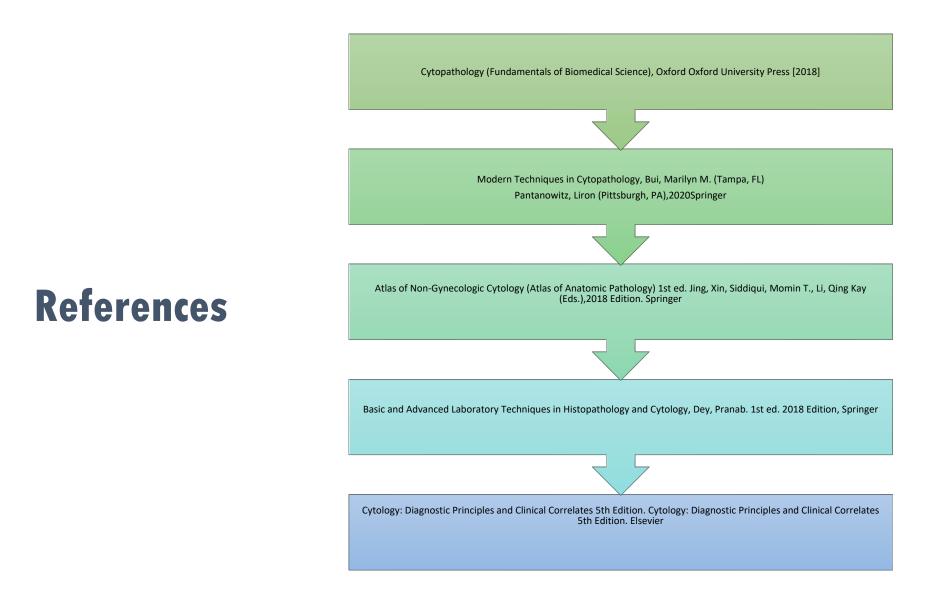
95% isopropyl alcohol

Buffered formalin

Formol-acetone

Mixture of ethanol & formalin

Prolonged fixation (weeks/months) in formalin may result in antigenic loss


Prolonged fixation in alcohol-based fixatives is not a major problem

Main methodical steps of immunocytochemistry

1.Cell fix	xation	2.An unma	tigen Isking	3.Blo	ocking	appr	ection of opriate on signals
5.Parallel detection of more antigens		6.Background staining		7.Controls			

Commonly Used Markers In Effusions

Mesothelial Markers	Adenocarcinoma Markers	Breast cytology
Calretinin	MOC-31	ER
WT-1	BerEP4	Mammaglobin
D2-40	mCEA	GATA 3
HBME-1	LeuM1/CD15	E cadherin
СК5/6	B72.3/TAG	P120 catenin

